328451 (28) BE ($4^{\text {th }}$ Semester)

Examination, Nov.-Dec., 2021

Branch : Et \& T

NUMERICAL ANALYSIS USING C (NEW)
Time Allowed : Three Hours
Maximum Marks : 80
Minimum Pass Marks : 28
Note : Part (a) is compulsory and attempt any two parts from (b), (c) and (d) in each unit. Unit-I
Q. 1. (a) What is the maximum length allowed in defining a variable in C ?2
(b) Explain the basic structure of C program and
its all components with suitable example: 7
(c) Relationship between Celsius and Fahrenheit
is governed by the formula: $F=\frac{9 C}{5}+32 \quad 7$

Write a program to convert temperature :
(i) From Celsius to Fahrenheit
(ii) From Fahrenheit to Celsius
(d) Write a program to calculate the number of
days and week in a year.
7

Unit-II

Q. 2. (a) What is function prototype ?

(3)

(b) Explain the various loop control structures with examples. 7
(c) Write a program to add two matrix of size $m \times n$.
(d) Explain call by value and call by reference with suitable example. 7

Unit-III

Q. 3. (a) What would be the equivalent pointer expression for referring the element a[i] [j] [k]
[ℓ]?
(b) Explain pointers with example. Also write a program to swap two integer numbers using pointer.
(c) Write a ' C ' program to check whether a
string is a palindrome or not using a user defined function. 7
(d) What do you mean by STRUCTURE ? Write
the differences between 'structure' and
'array'. 7

Unit-IV

Q. 4. (a) In Regula-Falsi method, the first approximation
is given by 2
(b) Find the real positive root of $3 x-\cos x-1=0$
by Newton-Raphson method correct to six.
decimal places. 7
(c) Find a real root of the equation $x^{3}-11 x^{2}+$
$32 x-22=0$ by Birge-Vieta method correct to four decimal places using the initial approximation $\mathrm{p}=0.5$.
(d) Apply Gauss-Seidal method to solve the

$$
\text { system of equations : } \quad 7
$$

$$
8 x-3 y+2 z=20
$$

$$
4 x+11 y-z=33
$$

$$
6 x+3 y+12 z=35
$$

Unit-V

Q. 5. (a) Only write the Taylor's series for solving

$$
\begin{equation*}
\frac{d y}{d x}=f(x, y), y\left(x_{0}\right)=y_{0} \tag{2}
\end{equation*}
$$

(b) Given that $y=\log x$ and :

$x:$	4.0	4.2	4.4	4.6	4.8	5.0	5.2
$y:$	1.3863	1.4351	1.4816	1.5261	1.5686	1.6094	1.6487

Evaluate $I=\int_{4}^{5.2} \log _{e} x d x$ by :
(i) Trapezoidal rule
(ii) Simpson's $\frac{1}{3}$ rd rule
(iii) Simpson's $\frac{3}{8}$ th rule
(iv) Weddle's rule
(v) Compare it with exact value
(c) Find by Runge-Kutta method an approximate
value of y for $x=0.8$, given that $y(0.4)=0.41$

$$
\text { and } \frac{d y}{d x}=\sqrt{x+y} \quad(\text { taking } h=0.2)
$$

(7)

(d) Determine the value of $y(0.4)$ by using

Milne's method. Given $y^{\prime}=x y+y^{2}, y(0)=1$,
$y(0.1)=1.1169, y(0.2)=1.2773, y(0.3)=$
1.5049.

7

